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Abstract 

The  compatibility  conditions  for  the  strain  measures of the  theory 

of  micromorphic  elastic  solids  are  presented.  Specific  forms  are 

given  for  the  linear  theory  and  for  the  linear  micropolar  elasticity. 
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1. Introduction 

Eringen  and  Suhubi [l, 21 gave  a  theory  of  microelasticity  in  which 

the  local  intrinsic  motion  of  material  elements  is  taken  into  account 

.in  the  continuum  behavior  of  elastic  solids.  This  theory  and  its 

later  extensions  and  specializations  show  that  a  large  variety  of 

physical  phenomena,  hitherto  not  encountered in the  classical  theories 

of  elasticity  and  fluid  dynamics, can  be treated.  For  example,  the 

effects  of  couple  stress,  distributed  body  couples,  surface  tensions, 

and  distributed  microcracks  can be formulated  mathematically  and  the 

underlying  physical  phenomena  can be studied  systematically.  Other 

work  related  to  this  has  appeared  both in the  United  States  and  Europe. 

The  aim  of  the  present  paper  is  not  an  assessment  of  existing  literature, 
but  to  supply  the  compatibility  conditions  missing  in  these  works. 

For  a  discussion  of  various  theories, we refer  the  reader  to [ 3 ]  and 

[ 4 1 *  

2. Strain  Measures 

According  to  the  theory  of  micromorphic materials',  the motion  of a 

material  volume  element AV is  described  in  terms  of  the  "average 

motions" of large  numbers  of  microvolume  elements A V ( a ) ,  ( a  = 1,  2,. . .) 
contained  in AV. The  position  vector of a  material  point  in AV 

is  marked  by X( = X + E ( a )  where X is  the  position  vector  of  the 
center  of  mas; P of i V  aid : ( a )  is ;he relative  position  vector  of a 

material  point of AV(co fro; the  center  of mass P, Fig. 2 .l.  The 

( a )  

a )  

motion of  the  assemblage  contained  in AV is  postulated  to  be 

'This terminology  was  introduced  by  Eringen [5] in  his  later  work. 
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Fig.  2 . 1  Macromass Elements  Containing  Micromass  Elements 
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where  repeated  indices  indicate  summation  over  the  range (1, 2, 3 ) .  

In (2.1) x(X,t) is  the  spatial  position p of  the  center  of  mass P 

at  time t and  the  remaining  terms on the  right  of (2.1) represent 
the  intrinsic  motion  of  the  elements AV(ay> about  the  center  of  mass. 

It is  assumed  that  both  "macro"  and  "micro"-motions 

" 

x = x(X,t) , - " 

are  continuous  and  possess  continuous  partial  derivatives  with 

respect  to % (the  rectangular  coordinates  of X)  and  time t  as many 
times  as we desire. It is  also  assumed  that  the  inverse  motions  to 

(2.2) exist  in  some  neighborhood of X and  are  given  by 

- 

- 

x = X(x,t) , - " 

except  possibly  at  some  singular  surfaces,  lines  and  points. 

This is  secured  by  assuming  that  the  jacobians  not  vanish 

axk J : det (.r) !I 
5( 

in  some  neighborhood  of  X  during  the  time  interval  under  consideration. 
Here det  means  determinant  and x are  the  components of x referred  to  the 

spatial  rectangular  coordinates  x  Similarly  the  components of% referred k' ,k 
to  the  material  rectangular  coordinates % are  denoted byrKk i.e., 

- 
kK -K 

'(2.5) 
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where  i  (k=l, 2, 3)  and I (K=l, 2 , 3 )  are the  unit  base  vectors 

of  the  spatial  and  material  corrdinates  x  and % respectively. 
Deformation  gradients (x,  Ky X, ) and  the  microdeformations (x Tk) 
play  important  roles  in  the  theory.  Among  them we have the 

orthogonality  relations 

,ky ,K ’ 
k 

-. , k  -K’ 

Y 

X - 
K,kXk,L - 6KL 

of  which  (2.6)  is  an  immediate  consequence  of  the chain  rule of 

differentiation  and  (2.7)  follows  from  carrying  one  of  (2.2)  and 

(2.3)2 into  the  other. 
2 

By  considering  one  set  of  the  deformation  gradients  and  one  set  of 

the  microdeformations  unknown, we can  solve  for  the  other  sets  from 

the nine  linear  equations (2.6)  and  (2.7). Thus for  example 

cofactor  x 

%,k - 
- “~ k*K - - 1- e 

2  J  KLM  ekRm  XR,L  xm,M 
J 

where  e  and  e  are  the  alternating  symbols.  For  the  jacobians 

we  also  have 
KLM kRm 

J = - e  1 
6  KLM  ekRm  Xk,K  xR,L  Xm,M 

1 
j = 6 %LMekRm ‘kK ’EL ‘mM 

(2.10) 

(2 .11)  
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By  differentiation  from (2.10) and  (2.11) we also  have  the  identities 

" 

" 
d J  

ax - cofactor  of x k,K = %,k 
k,K 

= cofactor  of x = jgk 

Of these, (2.12)  is  the  well-known  identity of Jacobi  while  (2.13) 

is  appropriate  to  the  present  theory. 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where  we  drop  superscripts c1 from  and E,k and  write X ( a )  and 

x(&) for X ( a )  and  for  simplicity. In this  form X(a) and x(a) 

may  be  understood  to  denote  the  position  vector  of a material  point 

in AI!'") and in Av") , respectively, when the  number of such  microelements 
in AV and  Av  is  dense. 

-K 

- - - - - 

The  square  of  arc  length ds(a)  in  the  deformed  body can  be  calculated  by 

ds2(a) = dx(a),  dx(a) = d\dxk + 2dxkdCk + dE,,dS, - - ('2.16) 
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-1 
+ 2(YKL + YsLrmCRsEM)dsdEL 

-1 
+ Y  Y C d-d: ML NK MN -K  -L (2.17) 

where 

YKL(X, t) = x 
I k,KXkL (2.19) 

rKLM(Xyt) = X - k,KXkL,M 
(2.20) 

-1 
are  the  deformation  tensors  of  this  theory  and  CKL  is  the  inverse  of 

CKL  given  by 

-1 

'KL = %,k%,k (2.21) 

-1 
Here  C and C are  the  Green  and  Piola  deformation  tensors  of  classical 

continuum  mechanics  and Y and r are  microdeformation  tensors of the 
theory  of  micromorphic  materials. In this  theory,  therefore,  to  calculate 

length  and  angle  changes, we need  two  sets of new  strain  measures 

namely Y and r in  addition  to C of classical  continuum  mechanics. 

- - 
- I 

- - - 
Upon  introducing  the  displacement  vector U and  the  microdisplacement 
tensors 0 by 

- 
KL 

(2.22) 
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The  deformation  tensors  (2.18)  to  (2.20) can  be  written  as 

r~~~ - @KL,M + 'N,K@NL,M 
- 

(2.24) 

(2.25) 

where E and EKLy so defined,  along  with r are  the  material  strain 
measures  of  this  theory. 

KL  KLM 

The  entire  theory  can  be  developed,  equally  well, in terms  of  the  spatial 

deformations  and  strain  measures  (cf. [Z]). 

We  note  that  there  exist 6 + 9 + 27 = 42 strain  components  which  are 

expressed  through  (2.23)  to  (2.25)  in  terms  of 3 + 9 = 12 displacement 

components U and QKL. Clearly  then  any  arbitrary  set  of C y  Y and r do IC ~ 

not  correspond  to  physically  realizable  displacement  fields U and @. 
More  precisely  we  may  pose  the  question:  What  are  the  conditions  for 

which a set  of C y  Y and r give  rise  to  single-valued  displacement  fields? 
This  question  is  answered in the  following  section. 

" 

-. I 
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3 .  Equations of Compatibility 

The  compatibility  conditions  are  the  restrictions  that  must be placed 

upon C, ‘t and r so that  sinple-valued  continuous  displacement  fields 

U and @ exist  satisfying  (2.23)  to  (2.25). In other  words  they  are  the 

integrability  conditions  for  the  set  of  partial  differential  equations 

(2.23)  to  (2.25). In principle,  these  conditions  can  be  obtained  by 
elimination  of  the  gradients  of U and @ from  these  equations  by  successive 

differentiation  and  elimination.  This  method is,  however,  hopelessly 

awkward.  As  an  alternative  method  we  make  use  a  theorem  of  Riemann 

namely:  For  a  symmetric  tensor  akR  to  be  a  metric  tensor  for 

-. ” 

-. - 

-. - 

- a  guclidean.space, it  is  necessary & sufficient  that  a  be  a  non- kt--- 
sinpular,  positive  definite  tensor  and  that  the  Riemann-Christoffel 

tensor R (a) formed  from  it  vanish  identically.  We  have kRmn -- - - - 

(a) .L 
RkRmn - 2 (akn, Rm Rm,  kn-akm, Rn Rn,km + a   - a  ) 

-1 
+ ars([Rm,sl  [kn,rl - [Rn,sl [km,rl> (3.1) 

-1 
where  a  is  the  inverse  matrix  to  a  and [kE,m] is the  Christoffel  symbol 

of  the  second  kind  defined  by 
kR kR 

[kR,ml E -(a + a   - a  ) 
1 
2 k m , R  Rm,k  kR,m 
-I -1 

ans = ans  as^ = 6n& 

To  apply  this  theorem  we  need  to  recognize  the  metric  tensor  in 

the  deformed  and  undeformed  bodies.  Clearly YKL and r cannot  be 

used  for  this  purpose  for in general Y is  not  a  symmetric  tensor  and 
of  course r is  not  a  second  order  tensor.  We  observe,  however,  that 
(2.17) may  be  expressed  in  another  form  namely 

KLM 

- 
-. 

2 
ds (a) = qBdXAdXB , (A,B = 1, Z,.. . ,  6 )  (3.3) 
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r 

where we set dEl E dX4, dE E dX  d3 E dX6  and 2 5' 3 

where a parenthesis  enclosing  indices  indicates  the  symmetric  part 

of  the  quantity  involved,  e.g., 

(KL) = T ( r ~ L  + 'LK) 
- 1  

In ( 3 . 3 )  is a nonsingular  symmetric  positive  definite  second  order 

tensor of the  euclidean  six-dimensional  space.  Therefore,  for em 
to  be a metric  tensor  of  this  space,  according  to a theorem of Riemann, 
we  must  have 

(e) 
R~~~~ = o  (A, B y   C y  D, = 1, Z,.. . ,  6 )  

Substituting e in  place  of a in ( 3 . 1 )  we get - - 

2 (%,BC " BC,AD AC , BD  BD ,AC 
1 e -  

( 3 . 5 )  
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where 

 AB 
VBC = A (A,B,C ,..., F = 1,2 ,... ,6) CY 

These  results  are  valid  for  curvilinear  coordinates. 

The  tensor cB can  have  a  total  of 21 independent  components. In six 
dimensions  the  total  number  of  nonvanishing  components  of R 
is  105.  Thus  (3.6)  gives a  total  of  105  compatibility  equations  for 

the  deformation  tensor pAB. These  equations  are  second  order  partial 

differential  equations.  By  use  of  the  definitions  one  can  express 

these  equations  in  terms  of C, Y and r .  The  resulting  expressions  are 

t o o  complicated  to  reproduce  here.  Instead we give  the  explicit 

forms  of  the  compatibility  conditions  for  the  linear  theory. In this 

case  all  the  nonlinear  terms  in  (3.6)  are  dropped  reducing  it  to 

ABCD 

I " 

For  the  linear  theory  from ( 3 . 4 )  we  have 

where 

(3.7) 

(3.9) 

(3.10) 

" I 

where E, and r are  the  material  strain  measures  of  the  linear 
theory  defined by 
" - 
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(3.11) 

The 6K K"3 and 6 K ? - 3  L"3 are  the  usual  Kronecker  deltas  which 
assume  the  value 1 when  the  indices  take  the  same  numerical  values and 

zero  otherwise, e.g., 

1 when K ' - 3  = K 

We  note the  following  identities  for  future  use 

I I I I 

v K L , K '  - rK K ' - 3  L + rL  K ' - 3  K 2 $fKL,K'L' = 
- 

I 

YKK', L'   'K ' -3   L ' -3  K 
- - 

> VKK~ , L ' M '  
= o  

Now decompose (3.8) into  the  following set of independent  equations 

( 3 . 1 2 )  

(3.13) 



Upon  substituting  from (3.10) and  using  the  identities (3.12) we  find 
that  the  last  two  equations  of (3.13) are  satisfied  identically  and  the 

first  three  reduce  to 

- - - )E = 0 r ~ ~ , ~  r m ~ , ~  + ( r ~ ~ ~ , ~ ~  'NSK,LM s 

2&N) ,KL 
- - - 

- 2 E ~ , ~ ~  r ~ ~ , ~  NMK,L 
- - r  = o  

(3.14) 

(3.15) 

(3.16) 

Hence  equations  (3.14)  to (3.16) are  the  compatibility  conditions  of 

the  linear  theory  of  micromorphic  elastic  solids.  When = is  not 

considered  to  be  arbitrary  we  have  eighteen  independent  equations 

instead  of  105.  When Z is  considered  arbitrary  then  the  coefficients 

of  must  be  set  equal  to  zero  independently.  This  leads to 

-S 

S 

-S 

I .. I - 
E ~ ~ , ~  + E  MN,KL - E ~ ~ , ~ ~  - E ~ ~ q , ~ ~  = o  

. .. 
( 3 . 1 7 )  

'&N) ,KL - 2 E ~ , ~ ~  - r  MNL,K - r  NMK,L = o  

12 



Upon  using  (3.17)  we  find  that  (3.17)  is  satisfied  identically. 

The integration  of (3.17)4 gives 
4 2 

where R is  independent of X and E and is  subject  to  the 
restrictions 

NSMK - - 

R = o  
NS (JW 

(3.18) 

(3.19) 

With  the  help  of (3.18), equations (3.17) and  (3.17)  can be 

written  as 
3  5 

(3.21) 

These  are  integrated  to  give 

(3.22) 

(3.23) 

- where B and D are  independent of X and C and  are  subject  to KMN KMN I I 

B = 0, 
(KM) N 

- 
- DKNM (3.24) 

If  the  displacement  field U possesses  continuous  second  order  partial 

derivatives  and  the  microdisplacement  field QKL possesses  continuous  first 

order  partial  derivatives  then 

K 

- - 
'KLMN - B~~~ - D~~~ = O (3.25) 

as can  be  seen  by  merely  substituting  and r from  (3.11) 

on the  left  of  (3.22)  and  (3.23). 
KLM 

13 
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Hence 

E ~ ~ , ~  + %,KL E ~ ~ , ~ ~  E ~ ~ , ~ ~  
- - = o  

- I 

I - 
r~~~ ,N r~~~ ,M 

- = o  

(3 .26 )  

(3 .27 )  

(3 .28 )  

(3 .29 )  

and  the  proof  of 

Theorem 1: necessary & sufficient_  conditions  for  the  integrabilitl 
" of " the  system ( 3 . 1 1 )  for a simply-connected  domain  is  the  satisfaction 

" of  the  compatibility  conditions (3 .26 )  to ( 3 . 2 9 ) .  

When  the  compatibility  conditions (3 .26 )  to (3 .29)  are  satisfied  then 

single-valued  solutions  of  the  system ( 3 . 1 1 )  exist  for U and @ .and 

have  the  most  general  form 
K KL 

where R and BK are  independent  of % and EK and KL 

(KL) 
= o  

Physically R KL% + B represents a rigid  body  displacement  field. K 

(3 .30 )  

(3 .31 )  

(3 .32 )  

The  compatibility  conditions  corresponding  to  the  eulerian  counterpart 

(ekR' kR kRm 

I I - I I - 
E and y ) of  the  strain  measures E K L y  gKL and r have KLM 
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identical forms to ( 3 . 2 6 )  and ( 3 . 2 9 )  where  capital  letters  are  replaced 

by small  letters  and r is  replaced  by -y. For  the  definitions  of  the 
eulerian  strain  measures  and  other  related  accounts  the  reader  is  referred 

..-  ..- 

..- 

to [l]. 

4 .  Compatibility . .  ~~ Conditions  for  Micropolar  Elasticity 

For  micropolar  elasticity we have;by  definition 

The  linear  parts  of  the  strain  measures  given  by ( 2 . 2 3 )  to ( 2 . 2 5 )  now 

read 

E = u  --E Q 

r~~~ 

KL L , K  KLM M 

- --"E 0 
KLN N,M 

From  these  equations  it  is  clear  that 

Using  these we see that ( 3 . 2 8 )  is  satisfied  identically.  Thus: 

( 4 . 3 )  

Theorem 2: The necessary  sufficient  conditions  for  the  integrability 
" of the  system ( 4 . 3 )  for  a  simply-connected  domain is the  satisfaction of 
- the  equations ( 3 . 2 6 )  , ( 3 . 2 7 )  & ( 3 . 2 9 ) .  These  are  the  compatibility 
conditions of the  linear  theory of micropolar  elasticity,  Eringen [ 6 1 .  

( 3 . 2 6 )  and ( 3 . 2 7 )  were  obtained  by  Sandru [ 7 ] .  

15 
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